Lecture notes Abstract Modern Algebra: Lecture 22

1 Rings of polynomials II

1.1 Irreducible polynomials

Definition 1. A non-constant polynomial $f(x) \in F[x]$ is irreducible over a field F if $f(x)$ cannot be expressed as a product of two polynomials $g(x)$ and $h(x)$ in $F[x]$, where the degrees of $g(x)$ and $h(x)$ are both smaller than the degree of $f(x)$. Irreducible polynomials function as the "prime numbers" of polynomial rings. A polynomial that is not irreducible is called then reducible.

Example 2. The polynomial $x^{2}-2$ is irreducible in $\mathbb{Q}[x]$. The polynomial $x^{2}+1$ is irreducible over $\mathbb{R}[x]$. The polynomial $x^{2}-x-1$ is irreducible over $\mathbb{Q}[x]$ and of course also over $\mathbb{Z}[x]$.

Definition 3. A principal ideal domain (PID), is an integral domain where every ideal is generated by one element.

Proposition 4. Let F be a field. Then, the ring $F[x]$ is a PID.
Proof. Suppose that I is a nontrivial ideal in $F[x]$, and let $p(x) \in I$ be a nonzero element of minimal degree. If $\operatorname{deg} p(x)=0$, then $p(x)$ is a nonzero constant and 1 must be in I. Since 1 generates all of $F[x]$, the ideal $I=F[x]=\langle 1\rangle$ is a principal ideal. Now assume that our polynomial $p(x)$ of minimal degree in I has $\operatorname{deg} p(x)>0$ and let $f(x)$ be any element in I. By the division algorithm there exist $q(x)$ and $r(x)$ in $F[x]$ such that $f(x)=p(x) q(x)+r(x)$ and $\operatorname{deg} r(x)<\operatorname{deg} p(x)$. Since both $f(x)$ and $p(x)$ are in I and I is an ideal, $r(x)=f(x)-p(x) q(x)$ is also in I. However, since we chose $p(x)$ to be of minimal degree, $r(x)$ must be the zero polynomial and $I=\langle p(x)\rangle$ is a principal ideal.

Theorem 5. Let F be a field and suppose that $p(x) \in F[x]$. Then the ideal generated by $p(x)$ is maximal if and only if $p(x)$ is irreducible.

Proof. Suppose that $p(x)$ generates a maximal ideal of $F[x]$. Then $\langle p(x)\rangle$ is also a prime ideal of $F[x]$. Since a maximal ideal must be properly contained inside $F[x]$, the polynomial $p(x)$ cannot be a constant polynomial. Let us assume that $p(x)$ factors into two polynomials of lesser degree, say $p(x)=f(x) g(x)$. Since $\langle p(x)\rangle$ is a prime ideal one of these factors, say $f(x)$, is in $\langle p(x)\rangle$ and therefore be a multiple of $p(x)$. But this would imply that $\langle p(x)\rangle \subset\langle f(x)\rangle$, which is impossible since $\langle p(x)\rangle$ is maximal. Conversely, suppose that $p(x)$ is irreducible over $F[x]$. Let I be an ideal in $F[x]$ containing $\langle p(x)\rangle$. Since $F[x]$ is a PID, the ideal I is a principal ideal; hence, $I=\langle f(x)\rangle$ for some $f(x \in F[x]$. Since $p(x) \in I$, it must be the case that $p(x)=f(x) g(x)$ for some $g(x)$. However, $p(x)$ is irreducible; hence, either $f(x)$ or
$g(x)$ is a constant polynomial. If $f(x)$ is constant, then $I=F[x]$ and we are done. If $g(x)$ is constant, then $f(x)$ is a constant multiple of I and $I=\langle p(x)\rangle$. Thus, there are no proper ideals of $F[x]$ that properly contain $\langle p(x)\rangle$.
Corollary 6. Let F be a field, a prime ideal of $F[x]$ is also maximal.
Proof. Let $P \neq 0$ be a prime ideal in $F[x]$. Suppose that $P=\langle p\rangle$. If $p=a \cdot b$ is reducible $(\operatorname{deg}(a), \operatorname{deg}(b)<\operatorname{deg}(p))$, then $a \in P$ or $b \in P$. Suppose, for example, that $a=p a_{0} \in P$. We will have $p=p b_{0} b \Rightarrow p\left(1-b_{0} b\right)=0 \Rightarrow b_{0} b=1$ and b is invertible in $F[x]$. This gives $\operatorname{deg}(b(x))=0$ and $\operatorname{deg}(a(x))=\operatorname{deg}(p)$.

Corollary 7. On the ring of polynomials $F[x]$ over the field F, the following three coincide:

1. Prime ideals.

2. Maximal ideals.

3. Ideals generated by irreducible.

We would like to be able to determine whether or not a polynomial is irreducible.
Lemma 8. (Gauss lemma) If a monic polynomial $p(x) \in \mathbb{Z}[x]$ is reducible over $\mathbb{Q}[x]$, then is also reducible over $\mathbb{Z}[x]$ as the product

$$
f(x)=a(x) b(x)
$$

of monic polynomials $a(x), b(x) \in \mathbb{Z}[x]$.
Proof. Let $p(x)=\alpha(x) \beta(x)$ on $\mathbb{Q}[x]$ with

$$
\begin{gathered}
\alpha(x)=\frac{c_{1}}{d_{1}}\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right)=\frac{c_{1}}{d_{1}} \alpha_{1}(x), \\
\beta(x)=\frac{c_{2}}{d_{2}}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=\frac{c_{2}}{d_{2}} \beta_{1}(x),
\end{gathered}
$$

for polynomials $\alpha_{1}(x)$ and $\beta_{1}(x)$ in $\mathbb{Z}[x]$ with coefficients without any common factors. Consider the fraction $\frac{c}{d}$ as the product of $\frac{c_{1}}{d_{1}}$ and $\frac{c_{2}}{d_{2}}$ expressed in lowest terms. Hence, $d p(x)=c \alpha_{1}(x) \beta_{1}(x)$ If $d=1$, then $c a_{m} b_{n}=1$ since $p(x)$ is a monic polynomial. Hence, either $c=1$ or $c=-1$. If $c=1$, then either $a_{m}=b_{n}=1$ or $a_{m}=b_{n}=-1$. In the first case $p(x)=\alpha_{1}(x) \beta_{1}(x)$, where $\alpha_{1}(x)$ and $\beta_{1}(x)$ are monic polynomials with $\operatorname{deg} \alpha(x)=\operatorname{deg} \alpha_{1}(x)$ and $\operatorname{deg} \beta(x)=\operatorname{deg} \beta_{1}(x)$. In the second case we take $a(x)=-\alpha_{1}(x)$ and $b(x)=-\beta_{1}(x)$ as the correct monic polynomials since $p(x)=$ $\left(-\alpha_{1}(x)\right)\left(-\beta_{1}(x)\right)=a(x) b(x)$. The case in which $c=-1$ can be handled similarly. Now suppose that $d \neq 1$. Since $\operatorname{gcd}(c, d)=1$, there exists a prime p such that p divides d and p does not divide c. Also, since the coefficients of $\alpha_{1}(x)$ are relatively prime, there exists a coefficient a_{i} such that p does not divide a_{i}. Similarly, there exists a coefficient b_{j} of $\beta_{1}(x)$ such that p does not divide b_{j}. Let us reduce the polynomials α_{1} and $\beta_{1} \bmod p$ to obtain $\alpha_{1}^{\prime}(x)$ and $\beta_{1}^{\prime}(x)$. We get $0=d=\alpha_{1}^{\prime}(x) \beta_{1}^{\prime}(x)$. However, this is impossible since $\mathbb{Z} p[x]$ is an integral domain.

Theorem 9. (Eisenstein's Criterion) Let p be a prime and suppose that

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x] .
$$

If the number p is such that p divides a_{i} for $i=0,1, \ldots, n-1$, but p does not divide a_{n} and p^{2} does not divide a_{0}, then $f(x)$ is irreducible over \mathbb{Q}.

Proof. By Gauss's Lemma, we need only show that $f(x)$ does not factor into polynomials of lower degree in $\mathbb{Z}[x]$. Let

$$
f(x)=\left(b_{r} x^{r}+\cdots+b_{1} x+b_{0}\right)\left(c_{s} x^{s}+\cdots+c_{1} x+c_{0}\right)
$$

be a factorization in $\mathbb{Z}[x]$, with b_{r} and c_{s} not equal to zero and $r, s<n$. Since p^{2} does not divide $a_{0}=b_{0} c_{0}$, either b_{0} or c_{0} is not divisible by p. Suppose that p divides c_{0} and not b_{0}. Since p does not divide $a_{n}=b_{r} c_{s}$, neither b_{r} nor c_{s} is divisible by p. Let m be the smallest value of k such that p does not divide c_{k}. Then

$$
a_{m}=b_{0} c_{m}+b_{1} c_{m-1}+\cdots+b_{m} c_{0}
$$

is not divisible by p, since each term on the right-hand side of the equation is divisible by p except for $b_{0} c_{m}$. Therefore, $s=m=n$ since a_{i} is divisible by p for $m<n$. Hence, $f(x)$ cannot be factored into polynomials of lower degree and therefore must be irreducible.

Example 10. The polynomial $f(x)=x^{5}+7 x^{4}+14 x^{3}+21 x^{2}+35$ is irreducible over \mathbb{Z} using $p=7$.

Example 11. Let p be a prime number. The polynomial $f(x)=\frac{(x+1)^{p}-1}{x}$ is irreducible on $\mathbb{Z}[x]$. We express

$$
f(x)=x^{p-1}+p x^{p-2}+\frac{1}{2} p(p-1) x^{p-3}+\cdots+\frac{1}{2} p(p-1) x+p,
$$

where the coefficients are $\binom{p}{k}$, for $k=1, \ldots, p-1$, are all divisible by p. The independent term however is $a_{0}=p$ not divisible by p^{2} and we can apply Eisenstein.

