
Lecture notes Abstract Modern Algebra: Lecture 22

1 Rings of polynomials II

1.1 Irreducible polynomials

Definition 1. A non-constant polynomial f(x) ∈ F [x] is irreducible over a field F
if f(x) cannot be expressed as a product of two polynomials g(x) and h(x)
in F [x], where the degrees of g(x) and h(x) are both smaller than the degree of
f(x). Irreducible polynomials function as the “prime numbers” of polynomial rings.
A polynomial that is not irreducible is called then reducible.

Example 2. The polynomial x2 − 2 is irreducible in Q[x]. The polynomial x2 + 1
is irreducible over R[x]. The polynomial x2 − x − 1 is irreducible over Q[x] and of
course also over Z[x].

Definition 3. A principal ideal domain (PID), is an integral domain where every
ideal is generated by one element.

Proposition 4. Let F be a field. Then, the ring F [x] is a PID.

Proof. Suppose that I is a nontrivial ideal in F [x], and let p(x) ∈ I be a nonzero
element of minimal degree. If deg p(x) = 0, then p(x) is a nonzero constant and 1
must be in I. Since 1 generates all of F [x], the ideal I = F [x] = 〈1〉 is a principal
ideal. Now assume that our polynomial p(x) of minimal degree in I has deg p(x) > 0
and let f(x) be any element in I. By the division algorithm there exist q(x) and r(x)
in F [x] such that f(x) = p(x)q(x) + r(x) and deg r(x) < deg p(x). Since both f(x)
and p(x) are in I and I is an ideal, r(x) = f(x) − p(x)q(x) is also in I. However,
since we chose p(x) to be of minimal degree, r(x) must be the zero polynomial and
I = 〈p(x)〉 is a principal ideal.

Theorem 5. Let F be a field and suppose that p(x) ∈ F [x]. Then the ideal generated
by p(x) is maximal if and only if p(x) is irreducible.

Proof. Suppose that p(x) generates a maximal ideal of F [x]. Then 〈p(x)〉 is also a
prime ideal of F [x]. Since a maximal ideal must be properly contained inside F [x],
the polynomial p(x) cannot be a constant polynomial. Let us assume that p(x)
factors into two polynomials of lesser degree, say p(x) = f(x)g(x). Since 〈p(x)〉 is
a prime ideal one of these factors, say f(x), is in 〈p(x)〉 and therefore be a multiple
of p(x). But this would imply that 〈p(x)〉 ⊂ 〈f(x)〉, which is impossible since 〈p(x)〉
is maximal. Conversely, suppose that p(x) is irreducible over F [x]. Let I be an
ideal in F [x] containing 〈p(x)〉. Since F [x] is a PID, the ideal I is a principal ideal;
hence, I = 〈f(x)〉 for some f(x ∈ F [x]. Since p(x) ∈ I, it must be the case that
p(x) = f(x)g(x) for some g(x). However, p(x) is irreducible; hence, either f(x) or

1



g(x) is a constant polynomial. If f(x) is constant, then I = F [x] and we are done. If
g(x) is constant, then f(x) is a constant multiple of I and I = 〈p(x)〉. Thus, there
are no proper ideals of F [x] that properly contain 〈p(x)〉.
Corollary 6. Let F be a field, a prime ideal of F [x] is also maximal.

Proof. Let P 6= 0 be a prime ideal in F [x]. Suppose that P = 〈p〉. If p = a · b is
reducible (deg(a), deg(b) < deg(p) ), then a ∈ P or b ∈ P . Suppose, for example, that
a = pa0 ∈ P . We will have p = pb0b ⇒ p(1 − b0b) = 0 ⇒ b0b = 1 and b is invertible
in F [x]. This gives deg(b(x)) = 0 and deg(a(x)) = deg(p).

Corollary 7. On the ring of polynomials F [x] over the field F , the following three
coincide:

1. Prime ideals.

2. Maximal ideals.

3. Ideals generated by irreducible.

We would like to be able to determine whether or not a polynomial is irreducible.

Lemma 8. (Gauss lemma) If a monic polynomial p(x) ∈ Z[x] is reducible over Q[x],
then is also reducible over Z[x] as the product

f(x) = a(x)b(x)

of monic polynomials a(x), b(x) ∈ Z[x].

Proof. Let p(x) = α(x)β(x) on Q[x] with

α(x) =
c1
d1

(a0 + a1x+ · · ·+ amx
m) =

c1
d1
α1(x),

β(x) =
c2
d2

(b0 + b1x+ · · ·+ bnx
n) =

c2
d2
β1(x),

for polynomials α1(x) and β1(x) in Z[x] with coefficients without any common factors.
Consider the fraction c

d
as the product of c1

d1
and c2

d2
expressed in lowest terms. Hence,

dp(x) = cα1(x)β1(x) If d = 1,then cambn = 1 since p(x) is a monic polynomial.
Hence, either c = 1 or c = −1. If c = 1, then either am = bn = 1 or am = bn = −1.
In the first case p(x) = α1(x)β1(x), where α1(x) and β1(x) are monic polynomials
with degα(x) = degα1(x) and deg β(x) = deg β1(x). In the second case we take
a(x) = −α1(x) and b(x) = −β1(x) as the correct monic polynomials since p(x) =
(−α1(x))(−β1(x)) = a(x)b(x). The case in which c = −1 can be handled similarly.
Now suppose that d 6= 1. Since gcd(c, d) = 1, there exists a prime p such that p
divides d and p does not divide c. Also, since the coefficients of α1(x) are relatively
prime, there exists a coefficient ai such that p does not divide ai. Similarly, there
exists a coefficient bj of β1(x) such that p does not divide bj. Let us reduce the
polynomials α1 and β1 mod p to obtain α′1(x) and β′1(x). We get 0 = d = α′1(x)β′1(x).
However, this is impossible since Zp[x] is an integral domain.
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Theorem 9. (Eisenstein’s Criterion) Let p be a prime and suppose that

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x].

If the number p is such that p divides ai for i = 0, 1, . . . , n− 1, but p does not divide
an and p2 does not divide a0, then f(x) is irreducible over Q.

Proof. By Gauss’s Lemma, we need only show that f(x) does not factor into polyno-
mials of lower degree in Z[x]. Let

f(x) = (brx
r + · · ·+ b1x+ b0)(csx

s + · · ·+ c1x+ c0)

be a factorization in Z[x], with br and cs not equal to zero and r, s < n. Since p2 does
not divide a0 = b0c0, either b0 or c0 is not divisible by p. Suppose that p divides c0
and not b0. Since p does not divide an = brcs, neither br nor cs is divisible by p. Let
m be the smallest value of k such that p does not divide ck. Then

am = b0cm + b1cm−1 + · · ·+ bmc0

is not divisible by p, since each term on the right-hand side of the equation is divisible
by p except for b0cm. Therefore, s = m = n since ai is divisible by p for m < n.
Hence, f(x) cannot be factored into polynomials of lower degree and therefore must
be irreducible.

Example 10. The polynomial f(x) = x5 + 7x4 + 14x3 + 21x2 + 35 is irreducible over
Z using p = 7.

Example 11. Let p be a prime number. The polynomial f(x) =
(x+ 1)p − 1

x
is

irreducible on Z[x]. We express

f(x) = xp−1 + pxp−2 +
1

2
p(p− 1)xp−3 + · · ·+ 1

2
p(p− 1)x+ p,

where the coefficients are
(
p
k

)
, for k = 1, . . . , p − 1, are all divisible by p. The inde-

pendent term however is a0 = p not divisible by p2 and we can apply Eisenstein.
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