Lecture notes Abstract Modern Algebra: Lecture 22

1 Rings of polynomials II

1.1 Irreducible polynomials

Definition 1. A non-constant polynomial $f(x) \in F[x]$ is irreducible over a field F if f(x) cannot be expressed as a product of two polynomials g(x) and h(x) in F[x], where the degrees of g(x) and h(x) are both smaller than the degree of f(x). Irreducible polynomials function as the "prime numbers" of polynomial rings. A polynomial that is not irreducible is called then reducible.

Example 2. The polynomial $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$. The polynomial $x^2 + 1$ is irreducible over $\mathbb{R}[x]$. The polynomial $x^2 - x - 1$ is irreducible over $\mathbb{Q}[x]$ and of course also over $\mathbb{Z}[x]$.

Definition 3. A principal ideal domain (PID), is an integral domain where every ideal is generated by one element.

Proposition 4. Let F be a field. Then, the ring F[x] is a PID.

Proof. Suppose that I is a nontrivial ideal in F[x], and let $p(x) \in I$ be a nonzero element of minimal degree. If deg p(x) = 0, then p(x) is a nonzero constant and 1 must be in I. Since 1 generates all of F[x], the ideal $I = F[x] = \langle 1 \rangle$ is a principal ideal. Now assume that our polynomial p(x) of minimal degree in I has deg p(x) > 0 and let f(x) be any element in I. By the division algorithm there exist q(x) and r(x) in F[x] such that f(x) = p(x)q(x) + r(x) and deg $r(x) < \deg p(x)$. Since both f(x) and p(x) are in I and I is an ideal, r(x) = f(x) - p(x)q(x) is also in I. However, since we chose p(x) to be of minimal degree, r(x) must be the zero polynomial and $I = \langle p(x) \rangle$ is a principal ideal. \Box

Theorem 5. Let F be a field and suppose that $p(x) \in F[x]$. Then the ideal generated by p(x) is maximal if and only if p(x) is irreducible.

Proof. Suppose that p(x) generates a maximal ideal of F[x]. Then $\langle p(x) \rangle$ is also a prime ideal of F[x]. Since a maximal ideal must be properly contained inside F[x], the polynomial p(x) cannot be a constant polynomial. Let us assume that p(x)factors into two polynomials of lesser degree, say p(x) = f(x)g(x). Since $\langle p(x) \rangle$ is a prime ideal one of these factors, say f(x), is in $\langle p(x) \rangle$ and therefore be a multiple of p(x). But this would imply that $\langle p(x) \rangle \subset \langle f(x) \rangle$, which is impossible since $\langle p(x) \rangle$ is maximal. Conversely, suppose that p(x) is irreducible over F[x]. Let I be an ideal in F[x] containing $\langle p(x) \rangle$. Since F[x] is a PID, the ideal I is a principal ideal; hence, $I = \langle f(x) \rangle$ for some $f(x \in F[x]$. Since $p(x) \in I$, it must be the case that p(x) = f(x)g(x) for some g(x). However, p(x) is irreducible; hence, either f(x) or g(x) is a constant polynomial. If f(x) is constant, then I = F[x] and we are done. If g(x) is constant, then f(x) is a constant multiple of I and $I = \langle p(x) \rangle$. Thus, there are no proper ideals of F[x] that properly contain $\langle p(x) \rangle$.

Corollary 6. Let F be a field, a prime ideal of F[x] is also maximal.

Proof. Let $P \neq 0$ be a prime ideal in F[x]. Suppose that $P = \langle p \rangle$. If $p = a \cdot b$ is reducible $(\deg(a), \deg(b) < \deg(p))$, then $a \in P$ or $b \in P$. Suppose, for example, that $a = pa_0 \in P$. We will have $p = pb_0b \Rightarrow p(1 - b_0b) = 0 \Rightarrow b_0b = 1$ and b is invertible in F[x]. This gives $\deg(b(x)) = 0$ and $\deg(a(x)) = \deg(p)$.

Corollary 7. On the ring of polynomials F[x] over the field F, the following three coincide:

- 1. Prime ideals.
- 2. Maximal ideals.
- 3. Ideals generated by irreducible.

We would like to be able to determine whether or not a polynomial is irreducible.

Lemma 8. (Gauss lemma) If a monic polynomial $p(x) \in \mathbb{Z}[x]$ is reducible over $\mathbb{Q}[x]$, then is also reducible over $\mathbb{Z}[x]$ as the product

$$f(x) = a(x)b(x)$$

of monic polynomials $a(x), b(x) \in \mathbb{Z}[x]$.

Proof. Let $p(x) = \alpha(x)\beta(x)$ on $\mathbb{Q}[x]$ with

$$\alpha(x) = \frac{c_1}{d_1}(a_0 + a_1x + \dots + a_mx^m) = \frac{c_1}{d_1}\alpha_1(x),$$

$$\beta(x) = \frac{c_2}{d_2}(b_0 + b_1x + \dots + b_nx^n) = \frac{c_2}{d_2}\beta_1(x),$$

for polynomials $\alpha_1(x)$ and $\beta_1(x)$ in $\mathbb{Z}[x]$ with coefficients without any common factors. Consider the fraction $\frac{c}{d}$ as the product of $\frac{c_1}{d_1}$ and $\frac{c_2}{d_2}$ expressed in lowest terms. Hence, $dp(x) = c\alpha_1(x)\beta_1(x)$ If d = 1, then $ca_mb_n = 1$ since p(x) is a monic polynomial. Hence, either c = 1 or c = -1. If c = 1, then either $a_m = b_n = 1$ or $a_m = b_n = -1$. In the first case $p(x) = \alpha_1(x)\beta_1(x)$, where $\alpha_1(x)$ and $\beta_1(x)$ are monic polynomials with deg $\alpha(x) = \deg \alpha_1(x)$ and deg $\beta(x) = \deg \beta_1(x)$. In the second case we take $a(x) = -\alpha_1(x)$ and $b(x) = -\beta_1(x)$ as the correct monic polynomials since p(x) = $(-\alpha_1(x))(-\beta_1(x)) = a(x)b(x)$. The case in which c = -1 can be handled similarly. Now suppose that $d \neq 1$. Since gcd(c, d) = 1, there exists a prime p such that pdivides d and p does not divide c. Also, since the coefficients of $\alpha_1(x)$ are relatively prime, there exists a coefficient a_i such that p does not divide a_i . Similarly, there exists a coefficient b_j of $\beta_1(x)$ such that p does not divide b_j . Let us reduce the polynomials α_1 and β_1 mod p to obtain $\alpha'_1(x)$ and $\beta'_1(x)$. We get $0 = d = \alpha'_1(x)\beta'_1(x)$. However, this is impossible since $\mathbb{Z}p[x]$ is an integral domain. **Theorem 9.** (Eisenstein's Criterion) Let p be a prime and suppose that

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Z}[x].$$

If the number p is such that p divides a_i for i = 0, 1, ..., n - 1, but p does not divide a_n and p^2 does not divide a_0 , then f(x) is irreducible over \mathbb{Q} .

Proof. By Gauss's Lemma, we need only show that f(x) does not factor into polynomials of lower degree in $\mathbb{Z}[x]$. Let

$$f(x) = (b_r x^r + \dots + b_1 x + b_0)(c_s x^s + \dots + c_1 x + c_0)$$

be a factorization in $\mathbb{Z}[x]$, with b_r and c_s not equal to zero and r, s < n. Since p^2 does not divide $a_0 = b_0 c_0$, either b_0 or c_0 is not divisible by p. Suppose that p divides c_0 and not b_0 . Since p does not divide $a_n = b_r c_s$, neither b_r nor c_s is divisible by p. Let m be the smallest value of k such that p does not divide c_k . Then

$$a_m = b_0 c_m + b_1 c_{m-1} + \dots + b_m c_0$$

is not divisible by p, since each term on the right-hand side of the equation is divisible by p except for b_0c_m . Therefore, s = m = n since a_i is divisible by p for m < n. Hence, f(x) cannot be factored into polynomials of lower degree and therefore must be irreducible.

Example 10. The polynomial $f(x) = x^5 + 7x^4 + 14x^3 + 21x^2 + 35$ is irreducible over \mathbb{Z} using p = 7.

Example 11. Let p be a prime number. The polynomial $f(x) = \frac{(x+1)^p - 1}{x}$ is irreducible on $\mathbb{Z}[x]$. We express

$$f(x) = x^{p-1} + px^{p-2} + \frac{1}{2}p(p-1)x^{p-3} + \dots + \frac{1}{2}p(p-1)x + p,$$

where the coefficients are $\binom{p}{k}$, for $k = 1, \ldots, p - 1$, are all divisible by p. The independent term however is $a_0 = p$ not divisible by p^2 and we can apply Eisenstein.